@mlmodel attribute
🔌dp.kinect3 dp.oak
- signature
mlmodel PATH_STRING- examples
@mlmodel c:\mymodels\squeezenet.onnx
@mlmodel darknet-abc123.onnx
Run machine learning inference with an ONNX model.
Input into model
Sensor color image is the single model input currently implemented.
Pre-processing of this raw sensor data is controlled with @mlinput.
Output inference results
Model results must be dense tensors of numeric data. Multiple tensors are supported. Sparse tensors, sequences, and maps are not currently supported.
These results are output on the 5th outlet as a Max dictionary. route and routepass are helpful to send it to other dict objects for post-processing.
This dictionary contains a named entry for each result tensor output by the model. Their names are defined by the model itself.
{
"$schema": "dp-nd-tensor",
"shape": [ 1, 1000, 1, 1 ],
"type": "float32",
"data": [ 1.49474326e-05, 2.23620050e-03, 1.65242789e-04,
9.92372283e-04, 7.42915319e-04, 5.80585969e-04,
...
]
}
-
$schemais “dp-nd-tensor” -
shapeis the tensor shape with an entry for every rank and its value as the extent -
typeis the tensor element type listed below -
datacontains the flattened element data of the tensor
Element types
ONNX data is converted from its native type into Max Dictionary compatible types like long, float32, char, etc.
| Onnx Native Element Type | C++ Type |
|---|---|
| ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT | float32 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8 | uint8 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8 | int8 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16 | uint16 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16 | int16 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32 | int32 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64 | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16 | float16 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE | float64 |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32 | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64 | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64 | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128 | |
| ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16 |